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Introduction� Yang-Mills gauge theory� Confinement� Vacuum state

Hamiltonian diagonalization� No sign problem� Vacuum as ground state� Wave function� Symmetry based on operator algebra
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Compression of Hilbert space

Quantum Field Theory� Infinite degrees of freedom� Hamiltonian is too large

Numerical renormalization group� K. Wilson (Kondo problem)� S. White (DMRG: Density Matrix RG)
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Density Matrix RG (DMRG)

Very successful in condensed matter physics.� Applied to various chain models
(1D Heisenberg, Hubbard, t-J, Kondo,...)� 2D Hubbard with small lattices� 1D models at finite temperature� Massive Schwinger model (Byrnes et al, PRD66)

DMRG is basically a method for fermions.

Does it work well for bosons?
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Fermion and boson

On a finite lattice� Fermion: finite dimensional� Boson: infinite dimensional

Essential difference.

DMRG needs to be tested in a bosonic model.

(1+1)-dim ��4 model

Critical coupling and exponent.
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Hamiltonian lattice model

(1+1)-dim ��4 modelL = Z dx �12(������� �20�2)� �4!�4�
Hamiltonian on a latticeH = LXn=1� 12a�2n + �20a2 �2n + �a4! �4n�+ 12a L�1Xn=1(�n � �n+1)2:

Open boundary conditions.
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Representation

Quantization [�m; �n℄ = iÆmn
Fock-like operators�n = 1p2(ayn + an)�n = ip2(ayn � an)[am; ayn℄ = Æmn and anj0i = 0.
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Compression of Hilbert space

ji(L)i jj(R)ij	i = PNLi=1PNRj=1	ijji(L)ijj(R)i= PNLk=1Dkju(L)k ijv(R)k i:Dk are singular values of 	ij	ij =PNLk=1 UikDkVkj
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Density matrices

In actual numerical works�(L)ii0 = NRXj=1	�ij	i0j = NLXk=1U�ikjDkj2Ui0k�(R)jj0 = NLXi=1 	�ij	ij0 = NLXk=1 V �kj jDkj2Vkj0
Diagonalization of the density matrices! D, U , and V
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DMRG sweep

j	i = MXi=1 NXj=1 MXk=1	ijkju(L)i ijj(n)ijv(R)k ijj(n)i � 1p(j�1)!(ayn)j�1j0i
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Vacuum energy
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Four digit convergence.
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Vacuum expectation value
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(M;N) = (10; 10) is used.
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Critical values
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Critical coupling
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Critical coupling

Method Result
DMRG (L = 1000) 59:89� 0:01
Monte Carlo (L = 512) 61:56+0:48�0:24
Gaussian effective potential 61:266
Gaussian effective potential 61:632
Connected Green function 58:704
Coupled cluster expansion 22:8 < (�=�2) < 51:6

Non-Gaussian variational 41:28
Discretized light cone 1 43:896, 33:000

Discretized light cone 2 42:948, 46:26
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Critical exponent �
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Conclusion� DMRG works well also in the bosonic model.� � ��2� = 59:89� 0:01� � = 0:1264� 0:0073� L = 500 is sufficiently close to the limit L!1.

Application of DMRG to SU(2) Yang-Mills Hamiltonian.
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Extension to higher dimensions

2D Hubbard

Large amount of memory is necessary.
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